Classification Model Optimization using Grid Search and Random Search in Machine Learning Algorithms
(1) STIKOM Tunas Bangsa, Pematangsiantar
(2) STIKOM Tunas Bangsa, Pematangsiantar
(3) STIKOM Tunas Bangsa, Pematangsiantar
(4) STIKOM Tunas Bangsa, Pematangsiantar
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
A. Morchid, “High-technology agriculture system to enhance food security: A concept of smart irrigation system using Internet of Things and cloud computing,” J. Saudi Soc. Agric. Sci., 2024, doi: 10.1016/j.jssas.2024.02.001.
J. Yin, “Conversation Technology With Micro-Learning: The Impact of Chatbot-Based Learning on Students’ Learning Motivation and Performance,” J. Educ. Comput. Res., vol. 59, no. 1, pp. 154–177, 2021, doi: 10.1177/0735633120952067.
A. Ahmadi, “Automatic tuning of PID controllers using deep recurrent neural networks with pruning based on tracking error,” J. Instrum., vol. 19, no. 2, 2024, doi: 10.1088/1748-0221/19/02/P02028.
Q. Hou, R. Xia, J. Zhang, Y. Feng, Z. Zhan, and X. Wang, “Learning visual overlapping image pairs for SfM via CNN fine-tuning with photogrammetric geometry information,” Int. J. Appl. Earth Obs. Geoinf., vol. 116, no. October 2022, p. 103162, 2023, doi: 10.1016/j.jag.2022.103162.
M. K. Suryadi, “A Comparative Study of Various Hyperparameter Tuning on Random Forest Classification with SMOTE and Feature Selection Using Genetic Algorithm in Software Defect Prediction,” J. Electron. Electromed. Eng. Med. Informatics, vol. 6, no. 2, pp. 137–147, 2024, doi: 10.35882/jeeemi.v6i2.375.
N. Becherer, J. Pecarina, S. Nykl, and K. Hopkinson, “Improving optimization of convolutional neural networks through parameter fine-tuning,” Neural Comput. Appl., vol. 31, no. 8, pp. 3469–3479, 2019, doi: 10.1007/s00521-017-3285-0.
A. Kurniawan, “Hybrid PSO-ACO Optimization for Rice Leaf Disease Classification Using Random Forest and Support Vector Machines,” Int. J. Adv. Comput. Sci. Appl., vol. 16, no. 6, pp. 388–397, 2025, doi: 10.14569/IJACSA.2025.0160638.
T. Sugihartono, “Optimizing Stunting Detection through SMOTE and Machine Learning: a Comparative Study of XGBoost, Random Forest, SVM, and k-NN,” J. Appl. Data Sci., vol. 6, no. 1, pp. 667–682, 2025, doi: 10.47738/jads.v6i1.494.
H. Wang et al., “Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images,” EJNMMI Res., vol. 7, no. 1, 2017, doi: 10.1186/s13550-017-0260-9.
Nabil Ibrahim El-Sawalhi, “Support Vector Machine Cost Estimation Model for Road Projects,” J. Civ. Eng. Archit., vol. 9, no. 9, pp. 1115–1125, 2015, doi: 10.17265/1934-7359/2015.09.012.
E. Purwaningsih, S. Informasi, U. Bina, and S. Informatika, “Improving The Performance Of Support Vector Machine With Forward Selection For Prediction Of,” vol. 8, no. 1, pp. 18–24, 2022, doi: 10.33480/jitk.v8i1.3327.From.
P. Golpour et al., “Comparison of support vector machine, naïve bayes and logistic regression for assessing the necessity for coronary angiography,” Int. J. Environ. Res. Public Health, vol. 17, no. 18, pp. 1–9, 2020, doi: 10.3390/ijerph17186449.
A. K. S. Yadav, “Distributed denial of service (DDOS) attacks and mitigation method using logistic regression-based GoogLeNet for real time in security games,” Int. J. Model. Simulation, Sci. Comput., 2024, doi: 10.1142/S1793962324410204.
K. S. Chong, “Comparison of Naive Bayes and SVM Classification in Grid-Search Hyperparameter Tuned and Non-Hyperparameter Tuned Healthcare Stock Market Sentiment Analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 12, pp. 90–94, 2022, doi: 10.14569/IJACSA.2022.0131213.
M. Bellaj, “Educational Data Mining: Employing Machine Learning Techniques and Hyperparameter Optimization to Improve Students’ Academic Performance,” Int. J. online Biomed. Eng., vol. 20, no. 3, pp. 55–74, 2024, doi: 10.3991/ijoe.v20i03.46287.
N. Somching, “Using machine learning algorithm and landsat time series to identify establishment year of para rubber plantations: a case study in Thalang district, Phuket Island, Thailand,” Int. J. Remote Sens., vol. 41, no. 23, pp. 9075–9100, 2020, doi: 10.1080/01431161.2020.1799450.
S. Aboukadri, A. Ouaddah, and A. Mezrioui, “Major Role of Artificial Intelligence, Machine Learning, and Deep Learning in Identity and Access Management Field: Challenges and State of the Art BT - Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022,” A. E. Hassanien, V. Snášel, M. Tang, T.-W. Sung, and K.-C. Chang, Eds., Cham: Springer International Publishing, 2023, pp. 50–64.
M. M. Moein, “Predictive models for concrete properties using machine learning and deep learning approaches: A review,” J. Build. Eng., vol. 63, 2023, doi: 10.1016/j.jobe.2022.105444.
M. Said, Y. Omar, S. Safwat, and A. Salem, “Explainable Artificial Intelligence Powered Model for Explainable Detection of Stroke Disease BT - Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022,” A. E. Hassanien, V. Snášel, M. Tang, T.-W. Sung, and K.-C. Chang, Eds., Cham: Springer International Publishing, 2023, pp. 211–223.
A. A. Aburomman and M. Bin Ibne Reaz, “A novel SVM-kNN-PSO ensemble method for intrusion detection system,” Appl. Soft Comput. J., vol. 38, pp. 360–372, 2016, doi: 10.1016/j.asoc.2015.10.011.
L. Chaves and G. Marques, “Data mining techniques for early diagnosis of diabetes: A comparative study,” Appl. Sci., vol. 11, no. 5, pp. 1–12, 2021, doi: 10.3390/app11052218.
E. Ismail, W. Gad, and M. Hashem, “A hybrid Stacking-SMOTE model for optimizing the prediction of autistic genes,” BMC Bioinformatics, vol. 24, no. 1, pp. 1–18, 2023, doi: 10.1186/s12859-023-05501-y.
S. Arshad, S. M. J. Zaidi, M. Ali, M. U. Hashmi, A. Manan, and ..., “A Comparative Study of Machine Learning Models for Heart Disease Prediction Using Grid Search and Random Search for Hyperparameter Tuning,” J. Comput. …, vol. 08, no. 01, 2024, [Online]. Available: https://jcbi.org/index.php/Main/article/view/697
W. Nugraha and A. Sasongko, “Hyperparameter Tuning pada Algoritma Klasifikasi dengan Grid Search Hyperparameter Tuning on Classification Algorithm with Grid Search,” Sist. J. Sist. Inf., vol. 11, no. 2, pp. 2540–9719, 2022, [Online]. Available: https://doi.org/10.32520/stmsi.v11i2.1750
D. M. Belete, “Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results,” Int. J. Comput. Appl., vol. 44, no. 9, pp. 875–886, 2022, doi: 10.1080/1206212X.2021.1974663.
Y. Kurniawati and M. Muhajir, “Optimization of Backpropagation Using Harmony Search for Gold Price Forecasting,” Pakistan J. Stat. Oper. Res., vol. 18, no. 3, pp. 589–599, 2022, doi: 10.18187/pjsor.v18i3.3915.
DOI: http://dx.doi.org/10.61944/bids.v4i2.136
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Syawaluddin Kadafi Parinduri, Putrama Alkhairi, Irawan Irawan, Hendry Qurniawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Bulletin of Informatics and Data Science
Asosiasi Peneliti Data Science Indonesia
Email: pdsi.bids@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.
