Perbandingan Metode Random Forest Classifier dan SVM Pada Klasifikasi Kemampuan Level Beradaptasi Pembelajaran Jarak Jauh Siswa

Ilham Adriansyah(1), Muhammad Diemas Mahendra(2), Errissya Rasywir(3*), Yovi Pratama(4),

(1) Universitas Dinamika Bangsa, Kota Jambi
(2) Universitas Dinamika Bangsa, Kota Jambi
(3) Universitas Dinamika Bangsa, Kota Jambi
(4) Universitas Dinamika Bangsa, Kota Jambi
(*) Corresponding Author

Abstract


WHO has declared that COVID-19 or SARS-CoV-2 has been a global pandemic since March 2020. Distance learning as we often hear is learning that prioritizes independence. Teachers can deliver teaching materials to students without having to meet face to face in the same room. This kind of learning can be done at the same time or at different times. This study aims to compare the results of the classification of students' distance learning adaptability levels with the random forest classifier and SVM methods. Obtaining the evaluation results of each algorithm used. Precision, recall, f1-score, and accuracy are evaluation indicators. The results of the classification of each adaptivity class got 73.1% for Moderate, 74.7% for Low and 66.1% for High. With the total accuracy of the SVM algorithm on the tested data of 73.36%. The results of the classification of each adaptivity class got 92.1% for Moderate, 92% for Low and 86% for High. With the total accuracy of the Random Forest Classifier algorithm on the tested data, it is 91.5%. From 1205 test data contents for each model, it was found that the Random Forest model has a higher accuracy but has an incorrect classification value of 321 data, and the accuracy of the Support Vector Machine model is lower but has an incorrect classification value of as much as 101 data


Keywords


Random Forest Classifier; SVM; Classification

Full Text:

PDF

References


N. Dwitri, J. A. Tampubolon, S. Prayoga, F. Ilmi Zer, and D. Hartama, Penerapan Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 Di Indonesia, Jti (Jurnal Teknol. Informasi), vol. 4, no. 1, pp. 101105, 2020.

A. R. Setiawan, Lembar Kegiatan Literasi Saintifik untuk Pembelajaran Jarak Jauh Topik Penyakit Coronavirus 2019 (COVID-19), Edukatif J. Ilmu Pendidik., vol. 2, no. 1, pp. 2837, 2020, doi: 10.31004/edukatif.v2i1.80.

Y. Gao, Z. Wang, S. Liu, L. Yang, W. Sang, and Y. Cai, TECCD: A Tree Embedding Approach for Code Clone Detection, Proc. - 2019 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2019, pp. 145156, 2019, doi: 10.1109/ICSME.2019.00025.

V. N. Sari, L. Y. Astri, and E. Rasywir, Analisis Dan Penerapan Algoritma Naive Bayes Untuk Evaluasi, J. Ilm. Mhs. Tek. Inform., vol. 2, no. 1, pp. 5368, 2020.

B. Aeniah, Meningkatkan Prestasi Belajar IPS Materi Mengenal Cara Menghadapi Bencana Alam Dengan Model Cooperative Tipe Circuit Learning Siswa Kelas VI Semester I SDN Batu Kembar Kecamatan Janapria Tahun Pelajaran 2015/2016, JISIP (Jurnal Ilmu Sos. dan Pendidikan), vol. 4, no. 1, 2020, doi: 10.36312/jisip.v4i1.1043.

L. D. Anggraeni, Y. R. Toby, and S. Rasmada, Analisis Asupan Zat Gizi Terhadap Status Gizi Balita, Faletehan Heal. J., vol. 8, no. 02, pp. 92101, 2021, doi: 10.33746/fhj.v8i02.191.

A. E. Maxwell, T. A. Warner, and F. Fang, Implementation of machine-learning classification in remote sensing: An applied review, Int. J. Remote Sens., vol. 39, no. 9, pp. 27842817, 2018, doi: 10.1080/01431161.2018.1433343.

R. F. Brena, J. P. Garca-Vzquez, C. E. Galvn-Tejada, D. Muoz-Rodriguez, C. Vargas-Rosales, and J. Fangmeyer, Evolution of Indoor Positioning Technologies: A Survey, J. Sensors, vol. 2017, 2017, doi: 10.1155/2017/2630413.

Y. Lukito and A. R. Chrismanto, Recurrent neural networks model for WiFi-based indoor positioning system, Proceeding 2017 Int. Conf. Smart Cities, Autom. Intell. Comput. Syst. ICON-SONICS 2017, vol. 2018-Janua, no. 118, pp. 121125, 2018, doi: 10.1109/ICON-SONICS.2017.8267833.

H. Bunyamin, Heriyanto, S. Novianti, and L. Sulistiani, Topic clustering and classification on final project reports: A comparison of traditional and modern approaches, IAENG Int. J. Comput. Sci., vol. 46, no. 3, pp. 16, 2019.

H. Hendrawan, A. Haris, E. Rasywir, and Y. Pratama, Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani, J. Paradig. UBSI, vol. 22, no. 2, pp. 132138, 2020.

Hendrawan, A. Haris, E. Rasywir, and Y. Pratama, Sistem Pakar Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani Berbasis Web, J. Media Inform. Budidarma, vol. 4, no. 4, pp. 12251234, 2020, doi: 10.30865/mib.v4i4.2521.

M. R. Borroek, E. Rasywir, Y. Pratama, Fachruddin, and M. Istoningtyas, Analysis on Knowledge Layer Application for Knowledge Based System, in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, pp. 177182, doi: 10.1109/ICECOS.2018.8605262.

Fachruddin, Saparudin, E. Rasywir, Y. Pratama, and B. Irawan, Extraction of object image features with gradation contour, Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 6, pp. 19131923, 2021, doi: 10.12928/TELKOMNIKA.v19i6.19491.

P. Alkhairi and A. P. Windarto, Penerapan K-Means Cluster pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara, Semin. Nas. Teknol. Komput. Sains, pp. 762767, 2019.

E. Gho, D. Z. Abidin, and E. Rasywir, Analisis Dan Penerapan Data Mining Pada Transaksi Penjualan Obat Menggunakan Algoritma Apriori Di Apotek Persijam, Tek. Inform. STIKOM Din. Bangsa, pp. 5664, 2013.

Y. Hartiwi, E. Rasywir, Y. Pratama, and P. A. Jusia, Eksperimen Pengenalan Wajah dengan fitur Indoor Positioning System menggunakan Algoritma CNN, J. Paradig. UBSI, vol. 22, no. 2, 2020.

X. Chen and S. Zou, Improved Wi-Fi Indoor Positioning Based on Particle Swarm Optimization, IEEE Sens. J., vol. 17, no. 21, pp. 71437148, 2017, doi: 10.1109/JSEN.2017.2749762.

D. F. Pramesti, Lahan, M. Tanzil Furqon, and C. Dewi, Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data, J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 723732, 2017, doi: 10.1109/EUMC.2008.4751704.

F. Fachruddin, E. Rasywir, Hendrawan, Y. Pratama, D. Kisbianty, and M. R. Borroek, Real Time Detection on Face Side Image with Ear Biometric Imaging Using Integral Image and Haar- Like Feature, 2018 Int. Conf. Electr. Eng. Comput. Sci., pp. 165170, 2018.

E. Rasywir and A. Purwarianti, Eksperimen pada Sistem Klasifikasi Berita Hoax Berbahasa Indonesia Berbasis Pembelajaran Mesin, J. Cybermatika, vol. 3, no. 2, pp. 18, 2015, [Online]. Available: http://cybermatika.stei.itb.ac.id/ojs/index.php/cybermatika/article/view/133.

E. Rasywir, Y. Pratama, H. Hendrawan, and M. Istoningtyas, Removal of Modulo as Hashing Modification Process in Essay Scoring System Using Rabin-Karp, 2018 Int. Conf. Electr. Eng. Comput. Sci., pp. 159164, 2018.

A. H. Salamah, M. Tamazin, M. A. Sharkas, and M. Khedr, An enhanced WiFi indoor localization System based on machine learning, 2016 Int. Conf. Indoor Position. Indoor Navig. IPIN 2016, no. October, pp. 47, 2016, doi: 10.1109/IPIN.2016.7743586.




DOI: http://dx.doi.org/10.61944/bids.v1i2.49

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ilham Adriansyah, Muhammad Diemas Mahendra, Errissya Rasywir*, Yovi Pratama

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Bulletin of Informatics and Data Science
Asosiasi Peneliti Data Science Indonesia
Email: pdsi.bids@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.