Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function

Rohmat Indra Borman(1*), Imam Ahmad(2), Yuri Rahmanto(3),

(1) Universitas Teknokrat Indonesia, Bandarlampung
(2) Universitas Teknokrat Indonesia, Bandarlampung
(3) Universitas Teknokrat Indonesia, Bandarlampung
(*) Corresponding Author

Abstract


Wild plants or what are usually called weeds are plants that are considered harmful because they grow in unwanted places. But it turns out that some wild plants have many benefits for the health of the human body. Wild plants have many forms of vegetation, one of which is often encountered is shrubs. There are many wild herbaceous plants that are efficacious as medicine. However, most of the people who do not have knowledge about the types of wild shrubs that have medicinal properties. This study aims to implement the Radial Basis Function (RBF) algorithm for the classification of wild herbaceous plant species with medicinal properties by extracting color and texture features. The color feature extraction is based on the average RGB value, while the texture feature extraction uses a Gabor filter with the mean, entropy, and variance parameters of the magnitude image. The result of feature extraction becomes input data which will be managed by the RBF artificial neural network. RBF is a neural network that has three layers that have feedforward properties that can assist in solving classification or pattern recognition problems. Based on the test results, the precision value is 91%, recall is 89% and accuracy is 90%. These results show that the Radial Basis Function (RBF) algorithm with color and texture feature extraction can classify wild shrubs with medicinal properties well.

Keywords


Image Classification; Color Feature Extraction; Texture Feature Extraction; Artificial Neural Networks; Radial Basis Function

Full Text:

PDF

References


D. Lestari, R. Koneri, and P. V. Maabuat, Keanekaragaman dan Pemanfaatan Tanaman Obat pada Pekarangan di Dumoga Utara, Kabupaten Bolaang Mongondow, Sulawesi Utara, J. Bios Logos, vol. 11, no. 2, pp. 8293, 2021.

R. Dewantari, M. Lintang, and N. Nurmiyati, Jenis Tumbuhan Yang Digunakan Sebagai Obat Tradisional di Daerah Eks- Karesidenan Surakarta, BIOEDUKASI, vol. 11, no. 2, pp. 118123, 2018.

A. Badrunasar and H. B. Santoso, Tumbuhan Liar Berkhasiat Obat. Bogor: Forda Press, 2017.

R. A. Destryana, Etnobotani dan Pengggunaan Tumbuhan Liar Sebagai Obat Tradisional Oleh Masyarakat Suku Madura (Studi di Kecamatan Lenteng, Guluk-Guluk, dan Bluto), J. Food Technol. Agroindustry, vol. 1, no. 2, pp. 18, 2019.

S. Ratna, Pengolahan Citra Digital dan Histogram Dengan Phyton dan Text Editor Phycharm, Technologia, vol. 11, no. 3, pp. 181186, 2020.

H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters, J. Ris. Inform., vol. 4, no. 1, pp. 6570, 2021.

A. Arifin, J. Hendryli, and D. E. Herwindiati, Klasifikasi Tanaman Obat Herbal Menggunakan Metode Support Vector Machine, Comput. J. Comput. Sci. Inf. Syst., vol. 5, no. 1, pp. 2535, 2021.

R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants, in ICOMITEE 2021, 2021, pp. 4650.

Y. Yuliska and K. U. Syaliman, Peningkatan Akurasi K-Nearest Neighbor Pada Data Index Standar Pencemaran Udara Kota Pekanbaru, IT J. Res. Dev., vol. 5, no. 1, pp. 1118, 2020.

K. Saputra S and M. I. Perangin-Angin, Klasifikasi Tanaman Obat Berdasarkan Ekstraksi Fitur Morfologi Daun Menggunakan Jaringan Syaraf Tiruan, J. Inform., vol. 5, no. 2, pp. 169174, 2018.

A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk, JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, pp. 388395, 2022.

N. Wiliani, A. Sani, and A. T. Andyanto, Klasifikasi Kerusakan Dengan Jaringan Syaraf Backpropagation pada Permukaan Solar Panel, J. Ilmu Pengetah. dan Teknol. Komput., vol. 5, no. 1, pp. 8994, 2019.

A. P. Widodo, E. A. Sarwoko, and Z. Firdaus, Akurasi Model Prediksi Metode Backpropagation Menggunakan Kombinasi Hidden Neuron Dengan Alpha, J. Mat., vol. 20, no. 2, pp. 7984, 2017.

V. Wahyuningrum, Penerapan Radial Basis Function Neural Network Dalam Pengklasifikasian Daerah Tertinggal di Indonesia, J. Apl. Stat. Komputasi Stat., vol. 12, no. 1, pp. 3754, 2020.

R. Hidayati, D. M. Midyanti, and S. Bahri, Klasifikasi Bibit Tanaman Lahan Gambut Berdasarkan Bentuk Daun Menggunakan Metode Radial Basis Function(RBF), in Seminar Nasional Teknologi Informasi dan Multimedia, 2018, pp. 1318.

E. Y. Puspaningrum, B. Nugroho, and H. A. Manggala, Penerapan Radial Basis Function Untuk Klasifikasi Jenis Tanah, SCAN, vol. XV, no. 1, pp. 4649, 2020.

M. A. Mamun and M. Akbar, Identifikasi Telur Fertil dan Infertil menggunakan Jaringan Syaraf Tiruan Radial Basis Function (RBF) Berdasarkan Citra Tekstur, KONSTELASI Konvergensi Teknol. dan Sist. Inf. Identifikasi, vol. 1, no. 2, pp. 346356, 2021.

Y. Chen, L. Song, Y. Liu, L. Yang, and D. Li, A Review of the Artificial Neural Network Models for Water Quality Prediction, Appl. Sci., vol. 10, no. 5776, pp. 149, 2020.

R. I. Borman, B. Priopradono, and A. R. Syah, Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (Bisindo), in Seminar Nasional Informatika dan Aplikasinya (SNIA), 2017, no. September, pp. 14.

A. R. Tanjung and R. Andrian, Implementasi Metode Ekstraksi Fitur Gabor Filter dan Probablity Neural Network (PNN) untuk Identifikasi Kain Tapis Lampung, J. Komputasi, vol. 8, no. 2, pp. 19, 2020.

A. Mulyanto, E. Susanti, F. Rossi, W. Wajiran, and R. I. Borman, Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR), JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 7, no. 1, pp. 5257, 2021.

R. I. Borman, R. Napianto, P. Nurlandari, and Z. Abidin, Implementasi Certainty Factor Dalam Mengatasi Ketidakpastian Pada Sistem Pakar Diagnosa Penyakit Kuda Laut, JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. VII, no. 1, pp. 18, 2020.




DOI: http://dx.doi.org/10.61944/bids.v1i1.3

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Rohmat Indra Borman, Imam Ahmad, Yuri Rahmanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Bulletin of Informatics and Data Science
Asosiasi Peneliti Data Science Indonesia
Email: pdsi.bids@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.