Penerapan Data Mining Klasifikasi Gizi Bayi Dengan Algoritma Decision Tree C4.5
(1) STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
(2) STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
(3) STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
(4) STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
(5) STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
(*) Corresponding Author
Abstract
Malnutrition is a condition experienced by a person due to a lack of nutritional intake or the number of nutrients consumed is below the standard. Nutrition Nutritional problems in children under 5 years old (toddlers) can have serious short-term and long-term impacts. Toddlers who are malnourished and undernourished can have an impact on morbidity even in developing countries, malnutrition is one of the factors causing child mortality. Indonesia's human development is currently still constrained by nutritional problems, especially child nutrition. This can be seen from the basic health research data (Riskesdas) in 2013 where the national prevalence of child malnutrition reached 5.7%, while malnutrition was 13.9%. For this reason, this study was carried out by classifying the nutritional status of infants and toddlers at Posyandu Gunung Maligas using the C4.5 algorithm as a reference to related parties to solve problems and find out the most influential factors on infant and toddler malnutrition.
Full Text:
PDFReferences
F. A. Aryanti, C. N. Istiqomah, D. Indrawan, and ..., Door To Door Edukasi, Pemantauan Status Gizi Dan Program Mama Keren Untuk Pencegahan Gizi Kurang Pada Balita Di Masa Pandemi , Masyarakat LPPM UMJ, 2021.
M. Septikasari, Status Gizi Anak dan Faktor yang Mempengaruhi, vol. 1, no. 2. 2018.
I. dan A. Mutiara, Penerapan K-Optimal Pada Algoritma Knn Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan Ip Sampai Dengan Semester 4, Klik - Kumpulan Jurnal Ilmu Komputer, vol. 2, no. 2, pp. 159173, 2015.
M. Sadli, F. Fajriana, W. Fuadi, E. Ermatita, and I. Pahendra, Penerapan Model K-Nearest Neighbors Dalam Klasifikasi Kebutuhan Daya Listrik Untuk Masing-Masing Daerah Di Kota Lhokseumawe, Jurnal ECOTIPE, vol. 5, no. 2, pp. 1118, 2018, doi: 10.33019/ecotipe.v5i2.646.
E. Darnila, M. Maryana, and M. Azmi, Aplikasi Klasifikasi Status Gizi Balita Menggunakan Metode Nave Bayes Berbasis Android, METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi, vol. 5, no. 2, pp. 135141, 2021, doi: 10.46880/jmika.vol5no2.pp135-141.
W. Katrina, H. J. Damanik, F. Parhusip, D. Hartama, A. P. Windarto, and A. Wanto, C.45 Classification Rules Model for Determining Students Level of Understanding of the Subject, Journal of Physics: Conference Series, vol. 1255, no. 1, 2019, doi: 10.1088/1742-6596/1255/1/012005.
N. D. Prayoga, Penerapan Algoritma C.45 Dalam Memprediksi Kelulusan Tepat Waktu Pada Perguruan Tinggi (Studi Kasus : Stmik Royal Kisaran), 2018, doi: 10.31227/OSF.IO/UNQT4.
H. Ahyar et al., Buku Metode Penelitian Kualitatif & Kuantitatif, no. March. 2020.
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 ZAHRA: Buletin Big Data, Data Science and Artificial Intelligence

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

