Implementasi Algoritma K-Medoids pada Pengelompokkan Keragaman Kelompok Tani
(1) STIKOM Tunas Bangsa, Pematang Siantar, Indonesia
(2) STIKOM Tunas Bangsa, Pematang Siantar, Indonesia
(3) STIKOM Tunas Bangsa, Pematang Siantar, Indonesia
(*) Corresponding Author
Abstract
Farmer groups have a role in driving agricultural development in rural areas and are the main actors in agriculture-based economic empowerment. This study aims to create a clustering model using the K-Medoids algorithm. The K-Medoids algorithm or also known as PAM (Partitioning Around Medoids) uses the clustering partition method to group a set of n objects into a number of k clusters, by grouping farmer groups so that the level of development and farmer groups according to superior commodities is obtained. This research was conducted in Pematang Bandar Simalungun. The data in this study were sourced from BBP (Agricultural Extension Center). The data collected is calculated according to the data so that farmer groups are obtained according to the leading commodity. The grouping is done based on the number of farmer group data from 4 villages in Pematang Bandar. It is hoped that this research can be an illustration of the BPP in taking resource development policies for each farmer group so that in the future more farmer groups are included in the highest cluster and are expected to have an impact on increasing the productivity of these farmer groups.
Full Text:
PDFReferences
S. Darma And G. W. Nurcahyo, Klasterisasi Teknik Promosi Dalam Meningkatkan Mutu Kampus Menggunakan Algoritma K-Medoids, J. Inform. Ekon. Bisnis, Vol. 3, Pp. 8994, 2021, Doi: 10.37034/Infeb.V3i3.87.
P. Alkhairi And Z. Situmorang, Penerapan Data Mining Untuk Menganalisis Kepuasan Pegawai Terhadap Pelayanan Bidang Sdm Dengan Algoritma C4.5, Jurasik (Jurnal Ris. Sist. Inf. Dan Tek. Inform., Vol. 7, No. 1, P. 40, 2022, Doi: 10.30645/Jurasik.V7i1.414.
R. U. B. Barus, I. Gunawan, B. E. Damanik, I. Parlina, And W. Saputra, Pengelompokan Data Penjualan Mie Berdasarkan Bulan Dengan Menggunakan Algoritma K-Medoids, J. Ilmu Komput. Dan Inform., Vol. 1, No. 2, Pp. 141156, 2021, Doi: 10.54082/Jiki.15.
P. Alkhairi, P. P. P. A. N. . F. I. R.H.Zer, E. R. Batubara, F. N. Tambunan, And R. Rosnelly, Pengenalan Pola Kemampuan Pelanggan Dalam Membayar Air Pdam Menggunakan Algoritma Naive Bayes, Jurnaltimes, Vol. X, No. 2, Pp. 2938, 2022.
G. Dwilestari, Mulyawan, Martanto, And I. Ali, Analisis Clustering Menggunakan K-Medoid Pada Data Penduduk Miskin Indonesia, Jursima J. Sist. Inf. Dan Manaj., Vol. 9, No. 3, Pp. 282290, 2021.
W. Utomo, The Comparison Of K-Means And K-Medoids Algorithms For Clustering The Spread Of The Covid-19 Outbreak In Indonesia, Ilk. J. Ilm., Vol. 13, No. 1, Pp. 3135, 2021, Doi: 10.33096/Ilkom.V13i1.763.31-35.
S. Harlina, Data Mining Pada Penentuan Kelayakan Kredit Menggunakan Algoritma K-Nn Berbasis Forward Selection Data Mining On Credit Feasibility Determination Using K-Nn Algorithm Based On Forward Selection, Ccit J., Vol. 11, No. 2, Pp. 236244, 2018, Doi: 10.33050/Ccit.V11i2.591.
D. R. Agustian And B. A. Darmawan, Analisis Clustering Demam Berdarah Dengue Dengan Algoritma K-Medoids (Studi Kasus Kabupaten Karawang), Jiko (Jurnal Inform. Dan Komputer), Vol. 6, No. 1, P. 18, 2022, Doi: 10.26798/Jiko.V6i1.504.
A. Supriyadi, A. Triayudi, And I. D. Sholihati, Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas, Jipi (Jurnal Ilm. Penelit. Dan Pembelajaran Inform., Vol. 6, No. 2, Pp. 229240, 2021, Doi: 10.29100/Jipi.V6i2.2008.
A. Fira, C. Rozikin, And G. Garno, Komparasi Algoritma K-Means Dan K-Medoids Untuk Pengelompokkan Penyebaran Covid-19 Di Indonesia, J. Appl. Informatics Comput., Vol. 5, No. 2, Pp. 133138, 2021, Doi: 10.30871/Jaic.V5i2.3286.
F. D. R. Sari And S. P. Ediwijojo, Pemetaan Tingkat Kemiskinan Di Provinsi Jawa Tengah Berdasarkan Kabupaten/Kota Dengan Metode K-Medoids, J. Media Inform. Budidarma, Vol. 5, No. 4, P. 1528, 2021, Doi: 10.30865/Mib.V5i4.3278.
M. N. P. Pamulang, M. N. Aini, And U. Enri3, Komparasi Distance Measure Pada K-Medoids Clustering Untuk Pengelompokkan Penyakit Ispa, Edumatic J. Pendidik. Inform., Vol. 5, No. 1, Pp. 99107, 2021, Doi: 10.29408/Edumatic.V5i1.3359.
C. Sukmayadi, A. Primajaya, And I. Maulana, Penerapan Algoritma K-Medoids Dalam Menentukan Daerah Rawan Banjir Di Kabupaten Karawang, Informal Informatics J., Vol. 6, No. 3, P. 187, 2021, Doi: 10.19184/Isj.V6i3.25423.
F. Alfiah, A. Almadayani, D. Al Farizi, And E. Widodo, Analisis Clustering K-Medoids Berdasarkan Indikator Kemiskinan Di Jawa Timur Tahun 2020, J. Ilm. Sains, Vol. 22, No. 1, P. 1, 2021, Doi: 10.35799/Jis.V22i1.35911.
F. Fajriana, Analisis Algoritma K-Medoids Pada Sistem Klasterisasi Produksi Perikanan Tangkap Kabupaten Aceh Utara, J. Edukasi Dan Penelit. Inform., Vol. 7, No. 2, P. 263, 2021, Doi: 10.26418/Jp.V7i2.47795.
A. Aditya, B. N. Sari, And T. N. Padilah, Comparison Analysis Of Euclidean And Gower Distance Measures On K-Medoids Cluster, J. Teknol. Dan Sist. Komput., Vol. 9, No. 1, Pp. 17, 2021, Doi: 10.14710/Jtsiskom.2020.13747.
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 FATIMAH: Penerapan Teknologi dan Sistem Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Published Papers Indexed/Abstracted By:




