Implementation of a Combination of Rank Reciprocal and Additive Ratio Assessment Approaches for 3D Printer Selection

Fryda Fatmayati(1*), Teotino Gomes Soares(2), Mursalim Tonggiroh(3), Allan Desi Alexander(4),

(1) Sekolah Tinggi Teknologi Kedirgantaraan, Yogyakarta
(2) Dili Institute of Technology, Dili
(3) Universitas Yapis Papua, Jayapura
(4) Universitas Bhayangkara Jakarta Raya, Jakarta Selatan
(*) Corresponding Author

Abstract


With the wide selection of 3D printers available on the market, the challenge arises for consumers and businesses to choose the device that best suits their specific needs. To determine the choice, the decision-maker must know one by one the specifications of the 3D printer to be purchased, which results in making difficult decisions and requiring a long time. This research aims to implement a combination of the Rank Reciprocal and additive ratio assessment (ARAS) approaches to make it easier to determine decisions for selecting a 3D printer. The Reciprocal Rank approach provides weight values by utilizing the reciprocal or inverse principle. Meanwhile, the ARAS approach is used to obtain the best alternative by evaluating alternative rankings based on their utility function. From the case studies that have been carried out, the highest to lowest utility values are Anycubic 4Max Pro (A2) getting a score of 0.8289, Creality Ender-3 Pro (A1) getting a score of 0.6174, Anet 3D Printer ET4 Pro (A3) getting a score of 0.5510, and Mingda Magician X2 (A4) getting a score of 0.5116. The output produced by the system in the case study carried out produces the same value as the manual calculation, meaning that the ARAS method calculation in the system is declared valid. Based on usability testing, it got a score of 90%, which shows the system is suitable for use

Keywords


3D Printer; Additive Ratio Assessment; ARAS Method; Decision Support System; Rank Reciprocal

Full Text:

PDF

References


A. Jandyal, I. Chaturvedi, I. Wazir, A. Raina, and M. I. Ul Haq, “3D printing – A review of processes, materials and applications in industry 4.0,” Sustain. Oper. Comput., vol. 3, pp. 33–42, 2022, doi: https://doi.org/10.1016/j.susoc.2021.09.004.

N. R. Madhu, H. Erfani, S. Jadoun, M. Amir, Y. Thiagarajan, and N. P. S. Chauhan, “Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: a review,” Int. J. Adv. Manuf. Technol., vol. 122, no. 5, pp. 2125–2138, 2022, doi: 10.1007/s00170-022-10048-y.

F. J. Roberts, Decision Support Systems: Types, Advantages and Disadvantages. New York: Nova Science Publishers, 2021.

S. Bandyopadhyay, Decision Support System: Tools and Techniques. Boca Raton: CRC Press, 2023.

P. Sakinah, N. Hayati, and A. E. Syaputra, “Sistem Penunjang Keputusan Pemilihan Laptop Menggunakan Metode Simple Additive Weighting,” J. Sistim Inf. dan Teknol., vol. 5, no. 2, pp. 1–7, 2023, doi: 10.37034/jsisfotek.v5i1.222.

D. Syahputra, M. Farhan Azmi, and M. P. Berutu, “Sistem Pendukung Keputusan Pemilihan Laptop Terbaik Dengan Metode SMART Berbasis Web,” JUKTISI J. Komput. Teknol. Inf. Sist. Komput., vol. 1, no. 2, pp. 21–31, 2022.

D. B. Srisulistiowati and A. Noe, “Sistem Pemilihan Personal Komputer (PC) Pada Sekolah Dasar Dengan Metode Analytical Hierarchy Process dan Multifactor Evaluation Process,” Inf. Syst. Educ. Prof., vol. 4, no. 2, pp. 144–153, 2020.

H. Nurinadi and Y. Brianorman, “Perbandingan Dalam Pemilihan Printer Menggunakan Metode Weighted Product,” JIKA (Jurnal Inform. Univ. Muhammadiyah Tangerang, vol. 4, no. 3, pp. 38–43, 2020.

D. Liu, T. Li, and D. Liang, “An integrated approach towards modeling ranked weights,” Comput. Ind. Eng., vol. 147, no. 106629, pp. 1–16, 2020, doi: 10.1016/j.cie.2020.106629.

S. M. Hatefi, H. Asadi, G. Shams, J. Tamošaitienė, and Z. Turskis, “Model for the Sustainable Material Selection by Applying Integrated Dempster-Shafer Evidence Theory and Additive Ratio Assessment (ARAS) Method,” Sustainability, vol. 13, no. 18. pp. 1–23, 2021. doi: 10.3390/su131810438.

N. Liu and X. Zhang, “An Overview of ARAS Method: Theory Development, Application Extension, and Future Challenge,” Int. J. Intell. Syst., vol. 36, no. 7, pp. 3524–3565, 2021, doi: 10.1002/int.22425.

S. S. Goswami, D. K. Behera, and S. Mitra, “Supplier Selection Problem by Applying Additive Ratio Assessment (ARAS) Methodology,” in Advances in Thermal Engineering, Manufacturing, and Production Management, 2021, pp. 369–382.

S. K. Aityan, Business Research Methodology: Research Process and Methods. Boca Raton: Springer International Publishing, 2022.

U. M. Mbanaso, L. Abrahams, and K. C. Okafor, Research Techniques for Computer Science, Information Systems and Cybersecurity. Cham: Springer Nature Switzerland, 2023. [Online]. Available: https://books.google.co.id/books?id=-crAEAAAQBAJ

H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters,” J. Ris. Inform., vol. 4, no. 1, pp. 65–70, 2021, doi: 10.34288/jri.v4i1.293.

Y. Surojo, “10 3D Printer Terbaik - Ditinjau oleh Software Engineer (Terbaru Tahun 2023),” mybest, 2023. https://id.my-best.com/139078

Y. Fernando, R. Napianto, and R. I. Borman, “Implementasi Algoritma Dempster-Shafer Theory Pada Sistem Pakar Diagnosa Penyakit Psikologis Gangguan Kontrol Impuls,” Insearch (Information Syst. Res. J., vol. 2, no. 2, pp. 46–54, 2022.

I. Ahmad, Y. Rahmanto, R. I. Borman, F. Rossi, Y. Jusman, and A. D. Alexander, “Identification of Pineapple Disease Based on Image Using Neural Network Self-Organizing Map (SOM) Model,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022.

H. Firdaus and A. Zakiah, “Implementation of Usability Testing Methods to Measure the Usability Aspect of Management Information System Mobile Application (Case Study Sukamiskin Correctional Institution),” I.J. Mod. Educ. Comput. Sci., vol. 5, pp. 58–67, 2021, doi: 10.5815/ijmecs.2021.05.06.

I. M. Pandiangan, M. Mesran, R. I. Borman, A. P. Windarto, and S. Setiawansyah, “Implementation of Operational Competitiveness Rating Analysis (OCRA) and Rank Order Centroid (ROC) to Determination of Minimarket Location,” Bull. Informatics Data Sci., vol. 2, no. 1, pp. 1–8, 2023.

H. R. B. Hutapea, “Decision Support System For The Selection Of The Best Extension Officers Applying The Method Of Additive Ratio Assessment (Case Study : Department Of Agriculture Deli Serdang),” IJICS (International J. Informatics Comput. Sci., vol. 3, no. 1, pp. 5–14, 2019.

N. Putra, K. Imtihan, P. Simanjuntak, M. Mesran, and H. Rohayani, “Decision Support System for Choosing the Best General Practitioner with Additive Ratio Assessment (ARAS) Method,” IJICS (International J. Informatics Comput. Sci., vol. 7, no. 1, p. 11, 2023, doi: 10.30865/ijics.v7i1.6165.

J. Azzahra, Y. Maulita, and M. A. Syari, “Motorcycle Credit Purchase Decision Support System With Additive Ratio Assesstment (ARAS) Method,” Int. J. Heal. Eng. Technol., vol. 1, no. 2, pp. 97–106, 2022.

R. I. Borman, F. Rossi, D. Alamsyah, R. Nuraini, Y. Jusman, and F. Fauziyah, “Classification of Medicinal Wild Plants Using Radial Basis Function Neural Network with Least Mean Square,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022, pp. 141–146.




DOI: http://dx.doi.org/10.61944/bids.v2i2.83

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Fryda Fatmayati, Teotino Gomes Soares, Mursalim Tonggiroh, Allan Desi Alexander

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Bulletin of Informatics and Data Science
Asosiasi Peneliti Data Science Indonesia
Email: pdsi.bids@gmail.com
This work is licensed under aCreative Commons Attribution 4.0 International License.