The Process of Grouping Elementary School Students Receiving PIP Assistance uses the K-Means Algorithm

Jen-Peng Huang(1), Pai-Chou Wang(2), Ridha Maya Faza Lubis(3*),

(1) Southern Taiwan University of Science and Technology
(2) Southern Taiwan University of Science and Technology
(3) Southern Taiwan University of Science and Technology
(*) Corresponding Author

Abstract


As part of receiving support from the Smart Indonesia Program (PIP), this study intends to analyze and apply the K-Means algorithm in the process of grouping elementary school students. PIP is a government initiative that attempts to give money to elementary school pupils from disadvantaged or weaker homes. The effective and fair distribution of aid monies depends on the proper grouping of the students. The K-Means approach was selected because it can cluster data, allowing the grouping of pupils based on pertinent traits. Numerous characteristics that can affect kids' financial needs are included in the data utilized in this study, including family income, parental education level, proximity to the school, and other social and economic issues. This study makes use of empirical data from a PIP-affiliated elementary school in an urban setting. The data includes a large number of pertinent features and thousands of pupils. Based on how similar their characteristics are, pupils are divided into numerous clusters using the K-Means technique. The findings of this study will help us better identify the traits of students who are eligible for PIP support. By doing this, the government can allocate funds more wisely and guarantee that aid is given where it is most needed. The PIP program can benefit children in need more by streamlining the process of grouping the students. In addition, this research has broader implications for social aid and education policy. To guarantee effectiveness and equity in resource allocation, the K-Means algorithm can be used in a variety of additional aid initiatives. Data mining-based strategies, like those employed in this study, are becoming more crucial to boost the effectiveness of aid programs like PIP. The findings of this study can help the government and educational institutions improve the efficacy of aid initiatives designed to boost Indonesian children's education

Keywords


Data Mining; K-Means Algorithm; Smart Indonesia Program; Receiving PIP

Full Text:

PDF

References


S. A. Rahmah and J. Antares, “Klasterisasi Seleksi Mahasiswa Calon Penerima Beasiswa Yayasan Menggunakan K-Means Clustering,” INFORMATIKA, vol. 13, no. 2, pp. 25–30, 2022.

Baskoro, Sriyanto, and L. Setya Rini, “Prediksi Penerima Beasiswa dengan Menggunakan Teknik Data Mining di Universitas Muhammadiyah Pringsewu,” Semin. Nas. Has. Penelit. dan Pengabdi. Masy. Inst. Inform. dan Bisnis Darmajaya, pp. 87–94, 2021.

A. Salam, D. Adiatma, and J. Zeniarja, “Implementasi Algoritma K-Means Dalam Pengklasteran untuk Rekomendasi Penerima Beasiswa PPA di UDINUS,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 62–68, 2020.

B. G. Sudarsono and S. P. Lestari, “Clustering Penerima Beasiswa Yayasan Untuk Mahasiswa Menggunakan Metode K-Means,” J. Media Inform. Budidarma, vol. 5, no. 1, pp. 258–263, 2021.

M. Z. Hossain, M. N. Akhtar, R. B. Ahmad, and M. Rahman, “A dynamic K-means clustering for data mining,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 2, pp. 521–526, 2019.

D. Aulia, M. Safii, and D. Suhendro, “Penerapan Algoritma K-Means dalam Proses Clustering Penilaian Kinerja Aparatur Sipil Negera di Sekretariat DPRD Pematangsiantar,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, p. 47, 2021.

E. Fammaldo and L. Hakim, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Tingkat Kesejahteraan Keluarga Untuk Program Kartu Indonesia Pintar,” J. Ilm. Teknol. Infomasi Terap., vol. 5, no. 1, pp. 23–31, 2019.

N. I. Danu, “Identifikasi Berita Hoax Menggunakan Kombinasi Metode K-Nearest Neigbor (KNN) dan TF-IDF Berbasis Web Dengan Menggunakan Framework Codeigniter,” 2021.

D. J. Lubis and M. B. Tamam, “Penerapan K-Means Untuk Pengelompokkan Beasiswa Santri di Pondok Pesantren Miftahul Huda Bogor,” Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 12, no. 1, pp. 7–20, 2022.

A. E. Rahayu, K. Hikmah, N. Yustia, and A. C. Fauzan, “Penerapan K-Means Clustering Untuk Penentuan Klasterisasi Beasiswa Bidikmisi Mahasiswa,” Ilk. J. Comput. Sci. Appl. Informatics, vol. 1, no. 2, pp. 82–86, 2019.

N. A. Manihuruk, M. Zarlis, E. Irawan, H. S. Tambunan, and I. Irawan, “Penerapan Data Mining Dalam Mengelompokkan Calon Penerima Beasiswa Dengan Menggunakan Algoritma K-Means,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 4, no. 1, 2020.

N. Agustina and M. Hermawati, “Implementasi Algoritma Naïve Bayes Classifier untuk Mendeteksi Berita Palsu pada Sosial Media,” Fakt. Exacta, vol. 14, no. 4, pp. 1979–276, 2021.

R. C. PRIHANDARI, “Data Mining: Konsep Dan Apikasi Menggunakan Rapidminer (Series: Supervised Learning Dan Unsupervised Learning),” 2022.

D. Darlinda and J. N. Utamajaya, “Sistem Pendukung Keputusan Penerima Beasiswa Program Indonesia Pintar Menggunakan Metode Algoritma K-Means Clustering,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 167, 2022.

A. W. Fathurrahman, M. Thoriqulhaq, and F. Arianto, “Penerapan Machine Learning untuk Pengklasifikasian Hoaks pada Platform Media Sosial,” Senada, vol. 2022, no. Senada, pp. 66–68, 2022.

Y. T. Handika, S. Defit, and G. W. Nurcahyo, “Text Mining Dalam Membandingkan Metode Naïve Bayes Dengan C.45 Dalam Mengidentifikasi Berita Hoax Pada Media Sosial,” Rang Tek. J., vol. 5, no. 1, pp. 116–123, 2022.

R. K. Putri and M. Athoillah, “Identifikasi Berita Hoax Terkait Virus Corona Menggunakan Long Short-Term Memory,” Semin. Nas. Has. Ris. dan Pengabdi., no. April, pp. 506–513, 2022.

M. H. Al Farisi, Analisis Sentimen Komentar Masyarakat Terhadap Kebijakan Pemerintah Tentang Sistem Zonasi Sekolah Menggunakan Algoritma K-Means Dan Algoritma Levensthein Distance. 2019.

E. Edward, “Identifikasi Berita HOAX Berbasis Web Menggunakan Algoritma C4.5,” J. Ilmu Komput. dan Sist. Inf., vol. 9, no. 1, p. 53, 2021.

Y. T. Handika, S. Defit, and G. W. Nurcahyo, “TEXT MINING DALAM MEMBANDINGKAN METODE NAÏVE BAYES DENGAN C. 45 DALAM MENGIDENTIFIKASI BERITA HOAX PADA MEDIA SOSIAL,” Rang Tek. J., vol. 5, no. 1, pp. 116–123, 2022.




DOI: http://dx.doi.org/10.61944/bids.v2i2.78

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ridha Maya Faza Lubis, Jen-Peng Huang, Pai-Chou Wang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Bulletin of Informatics and Data Science
Asosiasi Peneliti Data Science Indonesia
Email: pdsi.bids@gmail.com
This work is licensed under aCreative Commons Attribution 4.0 International License.