Analisis K-Medoids Dalam Pengelompokkan Rasio Murid dengan Guru, Murid dengan Rombel, dan Rasio Rombel dengan Kelas Jenjang Pendidikan SD dan SMP Menurut Provinsi

Dewinta Marthadinata Sinaga(1*), Agus Perdana Windarto(2), Dedy Hartama(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar
(2) STIKOM Tunas Bangsa, Pematangsiantar
(3) STIKOM Tunas Bangsa, Pematangsiantar
(*) Corresponding Author

Abstract


Study groups are a meeting place between students and teachers in a class in the education unit. So that, a study group can be said to be valid if it has at least 20 students and there are teachers who teach. The number of students and the number of study groups varies in each school that is adjusted to the number of students registered at the school. The various conditions and conditions of schools in Indonesia that allow rules regarding the number of learners and the number of study groups cannot be applied in their entirety. This can cause the low quality of education in Indonesia. Sources of data used from the Indonesian Central Statistics Agency website include data on student to teacher ratio, student with class, and class to class ratio for elementary and junior high school levels in 2016-2017. The purpose of this study is to create a grouping model using the k-medoids algorithm. The k-medoid method has similarities with the k-means method, which includes the partitioning method. Partitioning method is a method of grouping data into a number of clusters without a hierarchical structure between one another. From the results of the study above it can be concluded that the grouping of student to teacher ratios, students with rombel, and rombel ratios with elementary and junior high school education classes by province can apply the k-medoidkmeans method. The data is processed into 2 clusters, namely high and low clusters. From the results of calculations it can be concluded from 34 provinces in Indonesia that a high cluster (C1) obtained 5 provinces namely Kep. Bangka Belitung, DKI Jakarta, West Java, Banten, West Papua and 29 provinces as low clusters (C2) namely Aceh, North Sumatra, Riau, Jambi, South Indonesia, Bengkulu, Lampung, Kep. Riau, Central Java, DI Yogyakarta, East Java, Bali, West Nusa Tenggara, East Nusa Tenggara, West Kalimantan, Central Kalimantan, South Kalimantan, East Kalimantan, North Kalimantan, North Sulawesi, Central Sulawasi, South Sulawesi, Southeast Sulawesi, Gorontalo, West Sulawesi, Maluku, North Maluku, and Papua. The implementation process using the RapidMiner 5.3 application is used to help find accurate values. It is hoped that this research will provide input to the government to take policies in improving the quality of education in Indonesia in the future

Keywords


Datamining; Clustering; K-Medoid; Study Group; RapidMiner 5.3

Full Text:

PDF

References


Kemendikbud, Peraturan Menteri Pendidikan Dan Kebudayaan Republik Indonesia Nomor 17 Tahun 2017: Penerimaan peserta didik baru pada taman kanak-kanak, sekolah dasar, sekolah menengah pertama, sekolah menengah atas, sekolah menengah kejuruan, atau bentuk lain, Kementerian Pendidikan dan Kebudayaan, pp. 120, 2017.

E. Hartato, D. Sitorus, and A. Wanto, Analisis jaringan saraf tiruan untuk prediksi luas panen biofarmaka di indonesia, semanTIK, vol. 4, no. 1, pp. 4956, 2018.

B. K. Sihotang, A. Wanto, T. Informatika, P. Studi, and T. Informatika, Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang, vol. 17, no. 4, pp. 333346, 2018.

A. A. Fardhani, D. I. N. Simanjuntak, and A. Wanto, Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation, Jurnal Infomedia, vol. 3, no. 1, 2018.

K. Terbaik and B. Konsumen, Jurnal Sains dan Informatika, Jurnal Sains dan Informatika, vol. 4, no. 1, pp. 129135, 2018.

L. Marlinda, SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN TEMPAT WISATA YOGYAKARTA MENGGUNAKAN METODE ELimination Et Choix Traduisan La RealitA (ELECTRE), Jurnal.Umj.Ac.Id/Index.Php/Semnastek, no. November, pp. 17, 2016.

F. Syahputra, M. Mesran, I. Lubis, and A. P. Windarto, Sistem Pendukung Keputusan Pemilihan Guru Berprestasi Kota Medan Menerapkan Metode Preferences Selection Index (Studi Kasus : Dinas Pendidikan Kota Medan), KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 2, no. 1, pp. 147155, 2018.

D. R. Sari, A. P. Windarto, D. Hartama, and S. Solikhun, Sistem Pendukung Keputusan untuk Rekomendasi Kelulusan Sidang Skripsi Menggunakan Metode AHP-TOPSIS, Jurnal Teknologi dan Sistem Komputer, vol. 6, no. 1, p. 1, 2018.

H. Sulastri and A. I. Gufroni, Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia, Jurnal Nasional Teknologi dan Sistem Informasi, vol. 3, no. 2, pp. 299305, 2017.

M. G. Sadewo, A. Eriza, A. P. Windarto, and D. Hartama, Algoritma K-Means Dalam Mengelompokkan Desa / Kelurahan Menurut Keberadaan Keluarga Pengguna Listrik dan Sumber Penerangan Jalan Utama Berdasarkan Provinsi, pp. 754761, 2019.

A. P. Windarto, Penerapan Datamining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering Method, Techno.Com, vol. 16, no. 4, pp. 348357, 2017.

A. H. Aji, M. T. Furqon, and A. W. Widodo, Sistem Pakar Diagnosa Penyakit Ibu Hamil Menggunakan Metode Certainty Factor ( CF ), Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 5, pp. 21272134, 2018.

M. Turnip, Sistem Pakar Diagnosa Penyakit THT Menggunakan Metode Backward Chaining, Riau Journal Of Computer Science, vol. 1, no. 1, pp. 18, 2015.

M. Sugeno and T. Takagi, [15] Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116132, 1985.

W. Munandar et al., Metode Fuzzy Multiple Attribute Decision Making ( Fmadm ), no. 03, pp. 4558.

I. Tri, R. Yanto, M. Akmar, and T. Herawan, Engineering Applications of Arti fi cial Intelligence A modi fi ed Fuzzy k -Partition based on indiscernibility relation for categorical data clustering, Engineering Applications of Artificial Intelligence, vol. 53, pp. 4152, 2016.

D. M. Sinaga, A. P. Windarto, and D. Hartama, Pengelompokkan Indeks Harga Konsumen Menurut Kota Dengan Datamining Clustering, pp. 328336, 2019.

M. G. Sadewo, A. P. Windarto, and D. Hartama, PENERAPAN DATAMINING PADA POPULASI DAGING AYAM RAS PEDAGING DI INDONESIA BERDASARKAN PROVINSI MENGGUNAKAN K-MEANS, Nasional Informatika dan Teknologi Jaringan, vol. 2, no. 1, pp. 6067, 2016.

E. D. Sikumbang, Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori, Jurnal Teknik Komputer AMIK BSI (JTK), vol. Vol 4, No., no. September, pp. 14, 2018.

Z. Mustofa and I. S. Suasana, Algoritma Clustering K-Medoids pada E-Goverment Bidang Information and Communication Technologi Dalam Penentuan Status Edgi, Jurnal Teknologi Informasi dan Komunikasi, vol. 9, no. 1, pp. 110, 2018.

S. R. Ningsih, I. S. Damanik, A. P. Windarto, H. S. Tambunan, J. Jalaluddin, and A. Wanto, Analisis K-Medoids Dalam Pengelompokkan Penduduk Buta Huruf Menurut Provinsi, Prosiding Seminar Nasional Riset Information Science (SENARIS), vol. 1, no. September, p. 721, 2019.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Dewinta Marthadinata Sinaga, Agus Perdana Windarto, Dedy Hartama

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Jurnal Riset Teknik Informatika dan Data Sains
Asosiasi Peneliti Data Science Indonesia
Jalan Sisingamangaraja No 338, Simp. Limun, Medan, Sumatera Utara
Email: pdsi.jurtidas@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.