Implementation of XGBoost Ensemble and Support Vector Machine For Gender Classification of Skull Bones
(1) Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
(2) Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
(3) Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
(4) Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
(*) Corresponding Author
Abstract
Sex identification based on skull bones is an important step in forensic anthropology, especially in cases where unidentified human skeletons are found. Conventional methods such as DNA analysis are often used, but have limitations, especially when the bones are damaged, charred or decayed, making the analysis process difficult. This research applies XGBoost ensemble and Support Vector Machine for sex classification on skull bones. The purpose of this research is to handle complex data with many features and unbalanced data using the XGBoost ensemble method and Support Vector Machine (SVM). The data used consisted of 2,524 samples with 82 measurement features. Model performance was evaluated using accuracy, precision, recall, and F1 score metrics. The results showed that the combination of XGBoost and SVM methods, especially with the RBF kernel, was able to achieve accuracy of up to 91.52%. This finding proves that machine learning-based approaches can be an effective and reliable solution in supporting the forensic identification process
Keywords
Full Text:
PDFReferences
S. Aditya, I. Afrianty, S. Sanjaya, R. Abdillah, L. Handayani, and F. Insani, “Perbandingan Performansi Dengan Metode Correlation Based Feature Selection Pada LVQ 2,” Jurnal Instek, vol. 8, no. 1, 2023.
J. Bewes, A. Low, A. Morphett, F. D. Pate, and M. Henneberg, “Artificial intelligence for sex determination of skeletal remains: Application of a deep learning artificial neural network to human skulls,” J Forensic Leg Med, vol. 62, pp. 40–43, Feb. 2019, doi: 10.1016/j.jflm.2019.01.004.
Y. Harni, I. Afrianty, S. Sanjaya, R. Abdillah, F. Yanto, and F. Syafria, “Performance Analysis of LVQ 1 Using Feature Selection Gain Ratio for Sex Classification in Forensic Anthropology,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3625.
Darmila, I. Afrianty, S. Sanjaya, R. Abdillah, I. Iskandar, And F. Syafria, “Evaluasi Perbandingan Performansi Lvq 1, Lvq 2, Dan Lvq 3 Dalam Klasifikasi Jenis Kelamin Menggunakan Tulang Tengkorak,” Jurnal Instek, vol. 7, no. 2, 2022.
I. Afrianty, D. Nasien, and H. Haron, “Performance Analysis of Support Vector Machine in Sex Classification of The Sacrum Bone in Forensic Anthropology,” Jurnal Teknik Informatika, vol. 15, no. 1, pp. 63–72, Jun. 2022, doi: 10.15408/jti.v15i1.25254.
S. Sri Rahayu et al., “Klasifikasi Tulang Tengkorak Berdasarkan Jenis Kelamin Dalam Antropologi Forensik Menggunakan Metode Support Vector Machine,” Jurnal Inovtek Polbeng -Seri Informatika, vol. 9, no. 1, 2024.
D. Nasien, M. Hasmil Adiya, I. Afrianty, N. A. Ali, A. A. Samah, and Y. Rahayu, “Determination of Sex and Race in Forensic Anthropology: A Comparison of Artificial Neural Network and Support Vector Machine,” in Proceedings - 2021 4th International Conference on Computer and Informatics Engineering: IT-Based Digital Industrial Innovation for the Welfare of Society, IC2IE 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 51–55. doi: 10.1109/IC2IE53219.2021.9649182.
P. Mesejo, R. Martos, Ó. Ibáñez, J. Novo, and M. Ortega, “A Survey on artificial intelligence techniques for biomedical image analysis in skeleton-based forensic human identification,” Jul. 01, 2020, MDPI AG. doi: 10.3390/app10144703.
E. Nikita and P. Nikitas, “On the use of machine learning algorithms in forensic anthropology,” Leg Med, vol. 47, Nov. 2020, doi: 10.1016/j.legalmed.2020.101771.
D.- Andriansyah and Eka Wulansari Fridayanthie, “Optimization of Support Vector Machine and XGBoost Methods Using Feature Selection to Improve Classification Performance,” Journal Of Informatics And Telecommunication Engineering, vol. 6, no. 2, pp. 484–493, Jan. 2023, doi: 10.31289/jite.v6i2.8373.
K. Budholiya, S. K. Shrivastava, and V. Sharma, “An optimized XGBoost based diagnostic system for effective prediction of heart disease,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 7, pp. 4514–4523, Jul. 2022, doi: 10.1016/j.jksuci.2020.10.013.
M. Rama Hadi Suryanto and D. Wahyu Utomo, “Pembelajaran Ensemble Untuk Klasifikasi Ulasan Pelanggan E-commerce Menggunakan Teknik Boosting,” Infotekmesin, vol. 15, no. 02, 2024, doi: 10.35970/infotekmesin.v15i2.2314.
M. Ravly Andryan et al., “Komparasi Kinerja Algoritma Xgboost Dan Algoritma Support Vector Machine (Svm) Untuk Diagnosa Penyakit Kanker Payudara,” Jurnal Informatika dan Komputer), vol. 6, no. 1, pp. 1–5, 2022.
R. Setiawan Aji Nugroho, “Comparison Of Support Vector Machine(Svm), Xgboost And Random Forest For Sentiment Analysis Of Bumble App User Comments,” Jurnal Informatika Proxies, vol. 6, no. 1, 2022.
I. Hanif, “Implementing Extreme Gradient Boosting (XGBoost) Classifier to Improve Customer Churn Prediction,” European Alliance for Innovation n.o., Jan. 2020. doi: 10.4108/eai.2-8-2019.2290338.
M. Tayebi and S. El Kafhali, “Generative Modeling for Imbalanced Credit Card Fraud Transaction Detection, ”Journal of Cybersecurity and Privacy, vol. 5, no. 1, Mar. 2025, doi: 10.3390/jcp5010009.
N. P. Kha, “Optimasi Metode CART Menggunakan Metode Bagging Pada Studi Kasus Data Imbalance Berbasis Metode Adasyn,” Jurnal Ilmiah Matematika, vol. 10, no. 1, pp. 34–42, 2023, doi: 10.26555/konvergensi.30874.
M. Tiara, T. B. Sirait, N. S. Fathonah, and M. N. Fauzan, “Pemanfaatan Algoritma Adasyn Dan Support Vector Machine Dalam Meningkatkan Akurasi Prediksi Kanker Paru-Paru,” Jurnal JATI, vol. 8, no. 5, 2024.
T. Fatima, K. Xia, W. Yang, Q. U. Ain, and P. L. Perera, “Diabetes Prediction Using ADASYN-Based Data Augmentation and CNN-BiGRU Deep Learning Model,” Computers, Materials & Continua, vol. 0, no. 0, pp. 1–10, 2025, doi: 10.32604/cmc.2025.063686.
I. Gede, I. Sudipa, and M. Darmawiguna, Buku Ajar Data Mining. 2024. [Online]. Available: https://www.researchgate.net/publication/377415198
W. T. K. Widyastuti Andriyani, Mochammad Anshori, Dwi Normawati, Risqy Siwi Pradini, Mohamad Zaenudin, Muhammad Iqbal Harisuddin, M. Syauqi Haris, Astuty, Anna Angela Sitinjak, Matematika Pada Kecerdasan Buatan. Makasar: CV. Tohar Media, 2024.
DOI: http://dx.doi.org/10.61944/bids.v4i1.115
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Astrid Ramadhani, Iis Afrianty, Elvia Budianita, Siska Kurnia Gusti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Bulletin of Informatics and Data Science
Asosiasi Peneliti Data Science Indonesia
Email: pdsi.bids@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.
