Waste Classification using EfficientNetB3-Based Deep Learning for Supporting Sustainable Waste Management
(1) Bina Sarana Informatika University, Jakarta
(2) Bina Sarana Informatika University, Jakarta
(3) Bina Sarana Informatika University, Jakarta
(4) Istanbul Gelisim University, Istanbul
(*) Corresponding Author
Abstract
Waste management is a critical issue in sustainable development, particularly in large urban areas that generate a high volume of waste daily. One of the main challenges is the absence of a fast, accurate, and efficient waste sorting system. This study aims to develop a waste classification model using deep learning based on the EfficientNetB3 architecture to support more sustainable waste management. The model was trained on a dataset obtained from a Kaggle repository, consisting of 4,650 images evenly distributed across six waste categories: batteries, glass, metal, organic, paper, and plastic (775 images per class). The training and evaluation were conducted using a supervised image classification approach. The model achieved an overall accuracy of 93%, with average precision, recall, and F1-score values of 93%. Among all categories, organic waste achieved the highest F1-score (0.99), followed by paper (0.97) and batteries (0.97), while plastic and metal categories obtained F1-scores of 0.89. These results demonstrate that the EfficientNetB3 architecture is effective in performing multi-class waste classification. This model has the potential to be implemented in camera-based waste sorting systems such as smart bins or automated recycling units, thereby contributing to the reduction of unprocessed waste and supporting the achievement of Sustainable Development Goal (SDG) 12: responsible consumption and production
Keywords
Full Text:
PDFReferences
D. Salsabilla, Y. Aftaviani, and Z. Erita, “Optimalisasi Pengelolaan Lingkungan Hidup di Kota Padang Panjang : Tantangan dan Strategi Pengelolaan Sampah , Air Bersih , dan Ruang Terbuka Hijau,” Innov. J. Soc. Sci. Res., vol. 4, no. 6, pp. 5973–5987, 2024.
T. D. * Cindy Fatika Sari1 , Lubna Salsabila1 , Karol Teovani Lodan1, “Tantangan pertumbuhan sampah melalui tata kelola kota yang kolaboratif di kota batam,” Dialogue J. Ilmu Adm. Publik, vol. 6, no. 2, pp. 761–773, 2024.
Anisa Atsilah Azhar, Suryo Sakti Hadiwijoyo, and N. U. W. Nau, “Peran Multi-Aktor Dalam Mewujudkan Ketahanan Pangan Nasional Melalui Pengelolaan Food Loss and Waste Di Indonesia,” J. Ilm. Multidisiplin, vol. 2, no. 04, pp. 56–74, 2023, doi: 10.56127/jukim.v2i04.752.
L. S. Pieters, “Development Of Automatic Waste Classification System Using Cnn Based Deep Learning To Support Smart Waste Management Otomatis Menggunakan Deep Learning Berbasis,” J. INOVTEK POLBENG - SERI Inform., vol. 10, no. 1, pp. 214–224, 2025.
A. M. Akbar, M. Basri, and Wahyuddin, “Implementasi Machine Learning Menggunakan Algoritma Klasifikasi untuk Mendeteksi Jenis Sampah," Jurnal Publikasi Manajemen Informatika,vol. 3, no. 3, 2025, doi: 10.55606/jupumi.v3i3.3751
D. S. Aulia, H. Arwoko, and E. Asmawati, “Klasifikasi Sampah Rumah Tangga Menggunakan Metode Convolutional Neural Network,” METIK J., vol. 8, no. 2, pp. 114–120, 2024, doi: 10.47002/metik.v8i2.956.
N. T. S. Saptadi, P. Chyan;, S. C. Sumarta;, and K. Cakra, “Model Dataset Bahan Baku Sampah Organik Berbasis Citra Digital dengan Machine Learning,” J. Sist. Inf. Dan Teknol. Inf., vol. 13, no. 1, pp. 13–26, 2024.
R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 2, pp. 233–236, 2023, doi: 10.23960/jitet.v11i2.3034.
A. N. Sihananto, M. M. Al Haromainy, and A. P. Sari, “Pemilahan Jenis Sampah Menggunakan Algoritma Cnn,” Scan J. Teknol. Inf. dan Komun., vol. 17, no. 3, 2023, doi: 10.33005/scan.v17i3.3523.
A. Marzuki, A. Zaky, A. C. Adha, and T. M. Yoshandi, “Analisis Model Klasifikasi Sampah Botol Berbasis Image Processing Dan Machine Learning Dalam Rancang Bangun Aplikasi Penukaran Sampah Botol Otomatis," J. MEDIA Inform, vol. 6, no. 2, pp. 432–438, 2024.
Risfendra, G. F. Ananda, and H. Setyawan, “Deep Learning-Based Waste Classification with Transfer Learning Using,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 535–541, 2024.
A. Karno, W. Hastomo, I. Wardhana, Sutarno, and D. Arif, “29 Jenis Penyakit Tanaman Menggunakan Deep Learning EfficientNetB3 Identifikasi,” Insearch Inf. Syst. Res. J., vol. 2, no. 2, pp. 35–45, 2022.
A. Herlangga, “Penerapan Transfer Learning Efficientnetb3 Untuk Pengenalan Senjata Tradisional Sumatera Barat Menggunakan Convolutional Neural Network (Cnn),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, pp. 1416–1423, 2024, doi: 10.23960/jitet.v12i2.4256.
B. S. Acarya, A. Muhaimin, and K. M. Hindrayani, “Identifikasi Penyakit Daun Jeruk Siam Menggunakan Convolutional Neural Network (CNN) dengan Arsitektur EfficientNet,” G-Tech J. Teknol. Terap., vol. 8, no. 2, pp. 1040–1048, 2024, doi: 10.33379/gtech.v8i2.4120.
A. D. Saputra, D. Hindarto, B. Rahman, and H. Santoso, “Comparison of Accuracy in Detecting Tomato Leaf Disease with GoogleNet VS EfficientNetB3,” SinkrOn, vol. 8, no. 2, pp. 647–656, 2023, doi: 10.33395/sinkron.v8i2.12218.
G. A. Rakhmat and F. Taufikurohman, “Evaluasi Ensemble Stacking Arsitektur EfficientNetB3 dan EfficientNetV2S (Studi Kasus Klasifikasi Penyakit Alzheimer),” Prossiding FTI Itenas, pp. 1–13, 2023.
W. Musu, A. Ibrahim, and Heriadi, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4.5,” Pros. Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. X, no. 1, pp. 186–195, 2021.
A. Sah, A. D. Alexander, and A. M. Tanniewa, “Pengembangan Model Klasifikasi Citra Penyakit Daun Lada Menggunakan Jaringan Syaraf Tiruan Learning Vector Quantization ( LVQ ),” J. Ilm. Inform. DAN ILMU Komput., vol. 4, no. 1, pp. 34–44, 2025.
M. Fadli and R. A. Saputra, “Klasifikasi Dan Evaluasi Performa Model Random Forest Untuk Prediksi Stroke,” JT J. Tek., vol. 12, no. 02, pp. 72–80, 2023
H. H. Sucinta, T. Setiadi, and U. A. Dahlan, “Penerapan Algoritma Holt-Winters Exponential Smoothing Untuk Estimasi Dan Naïve Bayes Untuk Klasifikasi Produksi Kelapa Sawit,” Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 4, no. 4, pp. 1158–1170, 2023, doi: 10.30645/kesatria.v4i4.265
DOI: http://dx.doi.org/10.61944/bids.v4i1.108
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sarifah Agustiani, Agus Junaidi, Riska Aryanti, Anton Abdul Basah Kamil

This work is licensed under a Creative Commons Attribution 4.0 International License.
Bulletin of Informatics and Data Science
Asosiasi Peneliti Data Science Indonesia
Email: pdsi.bids@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.
